首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1666篇
  免费   44篇
  国内免费   83篇
化学   1139篇
晶体学   24篇
力学   47篇
数学   2篇
物理学   581篇
  2023年   102篇
  2022年   43篇
  2021年   44篇
  2020年   51篇
  2019年   34篇
  2018年   42篇
  2017年   52篇
  2016年   58篇
  2015年   54篇
  2014年   74篇
  2013年   91篇
  2012年   84篇
  2011年   152篇
  2010年   111篇
  2009年   211篇
  2008年   146篇
  2007年   127篇
  2006年   102篇
  2005年   53篇
  2004年   52篇
  2003年   30篇
  2002年   17篇
  2001年   13篇
  2000年   16篇
  1999年   11篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
排序方式: 共有1793条查询结果,搜索用时 140 毫秒
101.
One novel type of nanoscale cobalt-iron Prussian blue analogues (PBA) in the form of mixed nanorods and nanocubes were synthesized using cetyltrimethyl ammonium bromide (CTAB) as the surfactant in microemulsion at low temperature. The generated products were characterized by SQUID, XRD and IR techniques, etc. The effects of potassium contents, cobalt-to-iron ratios, reaction temperatures on the properties of the nanoscale cobalt-iron PBA were systematically explored. The results showed that the novel type of nanomaterials possessed distinct magnetic properties in that their coercivities were intensely dependent on cobalt-to-iron ratios and potassium contents. Furthermore, it was observed that low reaction temperature not only affected the morphologies of the products, but also had influence on their magnetic properties. Additionally, the cobalt-iron Prussian blue analogues were strongly influenced by CTAB around their surface, which led to higher Curie temperatures.  相似文献   
102.
In this work the effect of the dielectrophoretic force (DEP) in the self-assembly process of nanoparticles electrosprayed onto a substrate, is examined. DEP force is originated by the electric field created by the electrospray gun and by the distortion of the field created by the effective dipole of each nanoparticle. It is also shown that the modulus of this force is large when the distance between particles is few times its diameter, provided the medium is wet and the electric field is not switched off.The directional nature of DEP In this wet phase, is shown to chain nanoparticles aligned with the main electric field direction. Although there is a repulsive force between chains in the orthogonal direction to the field, it is minimum when the beads align with the voids in the nearby chains.DEP is a dominant force in the close distances of nanoparticles compared to double layer, van der Waals, electrophoretic retardation, weight and buoyancy.  相似文献   
103.
This article provides critical examinations of two mathematical models that have been developed in recent years to describe the impact of nano-layering on the enhancement of the effective thermal conductivity of nanofluids. Discrepancy between the two models is found to be an artefact of an incorrect derivation used in one of the models. With correct formulation, both models predict effective thermal conductivity enhancements that are not significantly greater than those predicted by classical Maxwell theory. This study indicates that nano-layering by itself is unable to account for the effective thermal conductivity enhancements observed in nanofluids.  相似文献   
104.
Due to the increased use of nanocomposites, mixing at nanoscale has become important. Current mixing techniques can be classified into: (a) dry mixing (mechanical mixing), (b) wet mixing, and (c) simultaneous production of mixed nanoparticles (when possible). Dry mixing is in general not effective in achieving desired mixing at nanoscale, whereas wet mixing suffers from different disadvantages like nanomaterial of interest should be insoluble, has to wet the liquid, and involves additional steps of filtration and drying. This paper examines the use of pressurized carbon dioxide having high density and low viscosity to replace the liquids (e.g., n-hexane, toluene). Ultrasound is applied to the suspension of nanopowders in gaseous and supercritical carbon dioxide where high impact collisions during sonication help mixing and the final mixture is obtained by simple depressurization. The method is tested for binary mixture of alumina/silica, silica/titania, MWNT (multiwalled carbon nanotubes)/silica, and MWNT/titania. The effects of sonication intensity and pressure on the degree of mixing are studied. Comparative study is also done with liquid n-hexane as a mixing media. Quantitative characterization (e.g., mean composition standard deviation, intensity of segregation) of mixing of alumina/silica and silica/titania is done with energy-dispersive X-ray spectroscopy, and that of MWNT/silica and MWNT/titania is done using field-emission scanning electron microscopy and day-light illumination spectrophotometry. Results show that mixing in carbon dioxide at higher ultrasound amplitudes is as good as in liquid n-hexane, and the final mixed product does not contain any residual media as in the case of liquid n-hexane.  相似文献   
105.
The thermodynamics approach has been developed to describe the self-diffusion in nano-sized solids. It has been established that identical homologous temperatures of metal nanoparticles with their fixed characteristic size give the identical coefficients of diffusion under different pressures. The dependence of the activation enthalpy of diffusion on pressure and on the characteristic size of nanoparticles is first obtained.  相似文献   
106.
Non-equilibrium molecular dynamics (NEMD) simulations have been performed for static electric fields for a range of positively charged spherical rutile-titania nanoparticles with radii of 1.5 to 2.9 nm for two different salt concentrations in water, in order to simulate electrophoresis directly. Using the observed limiting drag velocities, Helmholtz-Smoluchowski (HS) theory was used to estimate their ζ potentials. These estimates were compared to values from numerical solution of the non-linear Poisson-Boltzmann (PB) equation for representative configurations of the nanoparticles, in addition to idealised analytic and Debye-Hückel (DH) solutions about spherical particles of the same geometry and charge state, for the given salt concentrations. It was found that reasonable agreement was obtained between the various approaches, with the NEMD-HS results some 15%-15% smaller than the numerical PB results for more highly charged nanoparticles.  相似文献   
107.
Airborne microand nanoparticles-aerosols-play an important role in many natural phenomena and in a variety of industrial processes,as well as the public health issue. They may be of natural or anthropogenic origin;their presence in an environment might be intentional or due to undesirable release. In any case,merely the particle detection and characterization,ideally in real-time,provide an insight into the potential burden allowing also controlling and abatement measures. Due to the broad size range it is ...  相似文献   
108.
The functionalisation of Mesoporous Silica Nanoparticles (MSN) with the isocyanate group was carried out. The excellent reactivity of 3-isocynanatopropyltrichlorosilane allowed its grafting on the surface of MSN in mild conditions. Further reaction with different nucleophiles bearing primary amino groups led to the formation of a urea linkage and thus the covalent grafting of the nucleophiles to the MSN surface.  相似文献   
109.
110.
Nanosized cobalt ferrite spinel particles have been prepared by using mechanically alloyed nanoparticles. The effects of various preparation parameters on the crystallite size of cobalt ferrite which includes milling time; ball-to powder weight ratio (BPR) and sintering temperature, were studied using X-ray diffractometer (XRD). Scherrer's equation was used to study the crystallite size evolution of the as-prepared materials. The results of the as-milled sample revealed that both milling time and BPR plays a role in determining the crystallite size of the milled powder. However, where sintering is involved, the sintering temperature results in grain growth, and thus plays a dominant role in determining the final crystallite size of the samples sintered at higher temperature (above 900 °C). From the vibrating-sample magnetometer (VSM) measurement it was observed that the coercivity of the as-milled samples without sintering is almost negligible, which is a type characteristic of superparamagnetic material. However, for the sintered samples, the saturation increases while coercivity decreases with increases sintering temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号